skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grosberg, Alexander Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Beard, Daniel A (Ed.)
    Understanding muscle contraction mechanisms is a standing challenge, and one of the approaches has been to create models of the sarcomere–the basic contractile unit of striated muscle. While these models have been successful in elucidating many aspects of muscle contraction, they fall short in explaining the energetics of functional phenomena, such as rigor, and in particular, their dependence on the concentrations of the biomolecules involved in the cross-bridge cycle. Our hypothesis posits that the stochastic time delay between ATP adsorption and ADP/Pi release in the cross-bridge cycle necessitates a modeling approach where the rates of these two reaction steps are controlled by two independent parts of the total free energy change of the hydrolysis reaction. To test this hypothesis, we built a two-filament, stochastic-mechanical half-sarcomere model that separates the energetic roles of ATP and ADP/Pi in the cross-bridge cycle’s free energy landscape. Our results clearly demonstrate that there is a nontrivial dependence of the cross-bridge cycle’s kinetics on the independent concentrations of ATP, ADP, and Pi. The simplicity of the proposed model allows for analytical solutions of the more basic systems, which provide novel insight into the dominant mechanisms driving some of the experimentally observed contractile phenomena. 
    more » « less
  2. Chromatin – the functional form of DNA in the cell – exists in the form of a polymer immersed in a nucleoplasmic fluid inside the cell nucleus. Both chromatin and nucleoplasm are subject to active forces resulting from local biological processes. This activity leads to non-equilibrium phenomena, affecting chromatin organization and dynamics, yet the underlying physics is far from understood. Here, we expand upon a previously developed two-fluid model of chromatin and nucleoplasm by considering three types of activity in the form of force dipoles – two with both forces of the dipole acting on the same fluid (either polymer or nucleoplasm) and a third, with two forces pushing chromatin and solvent in opposite directions. We find that this latter type results in the most significant flows, dominating over most length scales of interest. Due to the friction between the fluids and their viscosity, we observe emergent screening length scales in the active flows of this system. We predict that the presence of different activity types and their relative strengths can be inferred from observing the power spectra of hydrodynamic fluctuations in the chromatin and the nucleoplasm. 
    more » « less
  3. null (Ed.)